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Using discrete simulations, we investigate the behavior of a model granular material within an annular shear
cell. Specifically, two-dimensional assemblies of disks are placed between two circular walls, the inner one
rotating with prescribed angular velocity, while the outer one may expand or shrink and maintains a constant
radial pressure. Focusing on steady state flows, we delineate in parameter space the range of applicability of the
recently introduced constitutive laws for sheared granular materials �based on the inertial number�. We discuss
the two origins of the stronger strain rates observed near the inner boundary, the vicinity of the wall and the
heteregeneous stress field in a Couette cell. Above a certain velocity, an inertial region develops near the inner
wall, to which the known constitutive laws apply, with suitable corrections due to wall slip, for small enough
stress gradients. Away from the inner wall, slow, apparently unbounded creep takes place in the nominally solid
material, although its density and shear to normal stress ratio are on the jammed side of the critical values. In
addition to rheological characterizations, our simulations provide microscopic information on the contact
network and velocity fluctuations that is potentially useful to assess theoretical approaches.
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I. INTRODUCTION

Significant progress in the modeling of dense granular
flow in the inertial regime has been brought about by the
recently introduced viscoplastic laws �1–3�, as identified in
experiments and discrete numerical simulations in two-
dimensional �2D� �4–6� and three–dimensional �3D� �7–9�
situations.

One typically considers homogeneous assemblies of
grains of size d and mass density �p, under shear stress � and
average pressure P. Denoting the shear rate as �̇, constitutive
laws are conveniently expressed as relations between dimen-
sionless quantities: effective friction �* �=� / P�, solid frac-
tion �, and most noticeably inertial number I= �̇d��p / P, thus
rescaling various experimental data into a consistent picture.
As the ratio of the inertial to shear times, the latter parameter
quantifies the inertial effects. For a frictional material, a
small value of I ��10−2� corresponds to the quasistatic criti-
cal state regime, while a large value of I ��10−1� corre-
sponds to the collisional regime �10�. As I increases, solid
fraction � decreases approximately linearly starting from a
maximum value �max=�c �dynamic dilatancy law�, while the
effective friction coefficient �* increases approximately lin-
early starting from a minimum value �

min
* =tan � �dynamic

friction law�. This yields a viscoplastic constitutive law, with
a Coulomb frictional term and a Bagnold viscous term.

In the quasistatic regime �I→0� this approach indicates
�*→�

min
* constant, independently on the strain, in steady

shear flow. Below this minimum stress ratio, quasistatic
strains are possible that are described by elastoplastic mod-
els. For large enough shear strains �11,12�, a solidlike mate-
rial approaches the so-called critical state, which coincides
with the state of steady shear flow in the limit of I→0.

Once constitutive laws are obtained on dealing with ho-
mogeneous systems, they should be locally applicable to all

possible flow geometries. Of course, they are quite unlikely
to provide a proper description of some strongly heteroge-
neous situations occurring when strain is localized near
boundaries, in thin layers, on a scale of a few grains. Yet, for
smoothly varying stress fields, they might prove sucessful, as
was shown, e.g., with flows down inclined planes. Those
were studied in the absence of lateral walls both experimen-
tally and through discrete simulations �see Ref. �2� for a
review�. Then the stress distribution becomes heterogeneous
but the effective friction remains constant, so that the situa-
tion is comparable to homogeneous flows. More remarkably,
a three-dimensional version of the constitutive law �7,13�
was found to model similar flows between lateral walls,
which induce truly three-dimensional stress distributions and
velocity profiles �14�.

Other simple geometries are the vertical chute and the
annular shear �2�. The present paper investigates the material
behavior in the annular �Couette� shear geometry, for which
the sample is confined between two rough cylinders and
sheared by the rotation of the inner one. The annular shear
cell is a classical experimental device to measure the rheo-
logical properties of complex fluids, and has been used for
granular materials, both in two dimensions �15–19� and in
three dimensions �20–34�. In this geometry, the stress distri-
bution is well known, as will be detailed in the following: the
normal stress is approximately constant while the shear
stress strongly decreases away from the inner wall. The de-
crease of �* away from the inner wall then explains the
localization of the shear. We may even expect a transition
between an inertial flow near the inner wall, where �*

��
min
* , and a quasistatic regime further, which analysis

would help understanding shear localization near a wall �in-
fluence of shear rate and confining pressure on the width and
dilation of shear bands�, of interest in industrial conducts
�35�, geotechnical situations �36� and tectonophysics �37�.

Following previous discrete simulations �38–41�, we in-
vestigate the rheology and the microstructure of granular ma-
terials in this geometry. We consider two-dimensional,*chevoir@lcpc.fr
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slightly polydisperse assemblies of cohesionless frictional
disks. This allows to vary the shear state and provides access
to microscopic information at the scale of the grains and of
the contact network, hardly measurable experimentally. We
prescribe the shear rate and the pressure, allowing global
dilation of the shear cell. To save computation time, we
implement periodic boundary conditions. All along this pa-
per, we shall compare our results with the homogeneous
shear case �4�.

Section II is devoted to the description of the simulated
system, its preparation, and the definition of dimensionless
control parameters. Section III describes the influence of the
shear velocity and of the system scale on the shear localiza-
tion near the inner wall through the radial profiles of various
quantities. Section IV shows the validity of the previous con-
stitutive law for inertial regime, and analyzes its limit in
quasistatic regime. Section V then explains how the consti-
tutive law is able to predict various quantities measured in
Sec. III. Preliminary and complementary results are pre-
sented in Ref. �42�.

II. SIMULATED SYSTEMS

A. Annular shear

The simulated systems are two dimensional �2D� as indi-
cated in Fig. 1. The granular material is a dense assembly of
n dissipative disks of average diameter d and average mass
m. A small polydispersity of 	20% prevents crystallization.

The granular material is subjected to annular shear be-
tween two circular rough walls. The outer wall �radius Ro�
does not rotate, while the inner wall �radius Ri� moves at the
prescribed rotation rate 
. The wall roughness, which re-
duces sliding, is made of contiguous glued grains with the
same characteristics as the flowing grains �polydispersity and
mechanical properties�. We call r and � the radial and ortho-
radial directions. r=Ri and r=Ro, respectively, correspond to
the centers of the grains which compose the inner and outer
walls. As the grains of the inner wall form one rigid body, the
motion of each of them combines a translation of its center
with velocity 
Rie�� and a rotation rate 
.

Since we have not observed any influence of the outer
wall on the behavior of the sheared material close to the
inner wall for Ro�2Ri, we have set Ro=2Ri, in the results

presented in this paper. The geometry is then defined by the
sole value of Ri /d.

An important feature of our discrete simulations is the
control of the normal stress exerted by the outer wall on the
grains, as done in Ref. �41�. We prescribe �rr�Ro�= P,

through the radial motion of the outer wall, given by Ṙo
= �P−�rr�Ro�� /gp, where gp is a viscous damping parameter.
In steady state, the motion of the outer wall oscillates around

a mean value ��Ṙo�=0� corresponding to a prescribed value
of the normal stress at this point ���rr�Ro��= P�. Such control
of the radial stress is applied in cylinder shear apparatus
aimed at studying the behavior of soils near an interface �43�.
It differs from most experiments and discrete simulations,
where the volume is fixed in two dimensions
�16,18,31,38,40,44�, or dilatancy is possible through the free
surface in three dimensions �20,22,24–26,28,30,32–34�.

We use the standard spring-dashpot contact law described
in �4�, which introduces the coefficients of restitution e and
friction �, and the elastic stiffness parameters kn and kt. Dis-
crete simulations are carried out with standard molecular dy-
namics method, as in Refs. �4,9,45–48�. The equations of
motion are discretized using Gear’s order three predictor-
corrector algorithm �49�.

To decrease the computation time, we have introduced
periodic boundary condition along �, exploiting the angular
invariance �50�. This reduces the representation of the annu-
lar shear cell to an angular sector 0���� ��2�� instead
of the whole system 0���2�. �=2� /N, where N is an
integer. The description of this method, together with the
analysis used to choose the values of � according to the size
of the systems, is presented in Appendix A. The list of simu-
lated geometries is given in Table I. We notice that the stud-
ied systems are much larger than in previous discrete simu-
lations.

B. Dimensional analysis

In our discrete simulations, the system is completely de-
scribed by a list of independent parameters associated to the
grains and to the shear state. As a way to reduce the number
of parameters, it is convenient to use dimensional analysis,
which guarantees that all the results can be expressed as
relations between dimensionless quantities.

The grains are described by their size d and mass m, their
coefficients of restitution e and friction �, and their elastic
stiffness parameters kn and kt. It was shown in previous dis-
crete simulations �4,46,51�, that kt /kn and e have nearly no
influence on dense granular flows. Consequently, kt /kn was
fixed to 0.5 and e was fixed to 0.1. The influence of �,

FIG. 1. Annular shear geometry �black grains constitute the
rough walls�.

TABLE I. List of simulated geometries.

n Ri /d � /2�

R25 1500 25 1 /4

R50 3100 50 1 /8

R100 8000 100 1 /12

R200 15700 200 1 /24
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especially near �=0, has been shown in Ref. �4�. In this
paper, we restrict our analysis to the value �=0.4, except for
the discussion of the constitutive law where the case of fric-
tionless grains ��=0� will be also analyzed. Results for other
values of � may be found in Ref. �42�.

The shear state is described by the prescribed normal
stress on the outer wall P, the rotation rate of the inner wall

, the radius Ri and Ro of the two walls, and the viscous
damping parameter gp. We have not observed any influence
of gp, once the shear zone is localized near the inner wall and
separated by a relatively thick layer of material from the
outer wall. The dimensionless number gp /�mkn remains of
order 0.1 in all our simulations, so that the time scale of the
fluctuations of Ro is imposed by the material rather than the
wall, and that the wall sticks to the material. Consequently,
the shear state is described by the geometric parameters Ri /d
�Ro=2Ri�, and by the dimensionless tangential velocity of
the inner wall �also called shear velocity�:

V� =

Ri

d
�m

P
, �1�

which is similar to the notion of inertial number, but at the
scale of the whole system. A small value of V� corresponds
to the quasistatic regime, while a large value corresponds to
the collisional regime. Seven values of V� have been studied
systematically for all systems: 0.0025, 0.025, 0.25, 0.5, 1.0,
1.5, and 2.5. The value 0.00025 was also considered in a few
cases.

Moreover the stress scales kn and P may be compared
through the dimensionless number �=kn / P. Let us call h the
normal deflection of the contact �or apparent interpenetration
of undeformed disks�. Being inversely proportional to the
relative deflection h /d of the contacts for a confining stress
P, � is called contact stiffness number �4�. A large value
corresponds to rigid grains, while a small value corresponds
to soft grains. It was shown �4� that it has no influence on the
results once it exceeds 104, which is the value chosen in all
our discrete simulations �rigid grain limit�.

In the following �both text and figures�, the length, mass,
time, and stress are made dimensionless by d, m, �m / P, and
P, respectively. Table II gives the list of material parameters.

C. Steady shear states

For a given sample, the first step consists in depositing the
grains without contact and at rest between the two distant
walls. Applying a normal stress at the outer wall, we com-
press the assembly of grains, considering first that they are
frictionless ��=0�, so as to get a very dense initial state.
Except near the walls, its solid fraction is close to 0.85, near
the random close packing of slightly polydispersed disks
�52�. When the granular material supports completely the

applied normal stress, the grains are at rest and the dense
system is ready to be sheared. We start to shear the material
�now considering that the grains are frictional� imposing the
rotation of the inner disk. After a transient, the system
reaches a steady state, characterized by constant time-
averaged profiles of solid fraction, velocity, and stress. In
practice, the stabilization of the profiles depends on the con-
sidered variable. If we take the inner wall displacement V��t
�where �t is the simulation time� as a shear length parameter,
the stresses usually present a short transient on a distance
around V��t�5. However, the stabilization of the solid frac-
tion rather requires V��t�50, mostly because of the very
dense initial state. Consequently we consider that the condi-
tion to reach a steady state is V��t�100. This procedure
provides an initial state with a shear velocity V�. As a way to
guarantee an initial state consistent for the comparisons be-
tween discrete simulations with different V�, the procedure is
first applied with the highest value of V�, and then V� is
progressively decreased.

In steady state, we consider that the statistical distribution
of the quantities of interest �structure, velocities, forces,…�
are independent of t and �, so that we average both in space
�along �� and in time �considering 200 time steps distributed
over the distance V��t�200�. Then we calculate the profiles
of solid fraction, velocity and stress components according to
the averaging procedure described in Appendix B.

Beyond the number of acquisition points, the consistency
of the averaged values depends on the shear strain accumu-
lated during the acquisition of data. We concentrate our in-
terest on the region where the system may be considered in a
steady state, which occurs at large enough shear strain.
Based on the observation of the transients, we consider that
this is true when �̇�t�10. Because of the strain localization,
the region of interest is located near the inner wall and lim-
ited to Ri→Ri+Rsteady, where the value of Rsteady is given in
Table III.

III. LOCALIZED SHEAR STATES

In this section, we show the shear localization near the
inner wall through the radial profiles of different quantities.
In Appendix C we focus on internal variables associated to
the contact network �53,54� �coordination number Z and mo-
bilization of friction M� and to the fluctuations of the motion
of the grains, translational or rotational. We systematically
discuss the influence of V�.

A. Stress field

In steady � �
�t =0� annular shear flows � �

�� =0�, without ra-
dial flow �vr=0�, continuum mechanics predicts �55� a varia-

TABLE II. List of material parameters.

Polydispersity � e kt /kn �

	20% 0.4 0.1 0.5 104

TABLE III. Limit of the steady state region. Minimum and
maximum values correspond to global quasistatic regime and to
V�=2.5, respectively.

Rsteady

R25 7–17

R50 9–25

R100 13–35

R200 18–52
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tion of normal stress �rr related to the velocity profile, and a
1 /r2 decrease of the shear stress �r� associated to the con-
servation of the torque:

4�

�

v�
2

r
=

��rr

�r
+

�rr − ���

r
, �2�

�r� = S	Ri

r

2

, �3�

where ��r� and v��r� are the solid fraction and orthoradial
velocity profiles, S is the shear stress at the inner wall �S
=�r��Ri��, and �ii are positive for compression.

Figure 2�a� shows the coarse-grained profiles of the nor-
mal stress component �rr in geometry R50 for different wall
velocities V�, while Fig. 2�b� shows the ratio between the
orthonormal and the normal stresses

�rr

���
. The normal stress

�rr is nearly constant and equal to the confining pressure P.
The ��rr /�r term in the momentum equation �2� smoothes
the �rr profile, which might explain the absence of fluctua-
tions of �rr. A crude estimate of the centrifugal effects may
be given, if the last term of Eq. �2� is neglected, and, antici-
pating Secs. III B and III C, a constant solid fraction �
�0.8 is assumed and an exponential velocity profile v��r�
=V� exp�−�r−Ri� / l�, with l between 2 and 6:

��rr�Ri� − 1� �
2��Ri

l
V�

2. �4�

Consequently, for Ri=50, ��rr�Ri�−1��0.05 for V�=1 and
l=5. For V�=2.5, the centrifugal effects might become sig-
nificant, however it has not been observed.

The radial �rr and orthoradial ��� stresses are nearly
equal for r−Ri�10. This has already been observed in other
configurations �plane shear �4,5,9� within less than 5%, in-
clined plane �5,32,46��, and was previously reported in an-
nular shear �40,44�. This very small normal stress difference
is not explained yet. The fluctuations of ��� for r−Ri�15
probably reflect the frozen disorder beyond the steady zone,
where the material is much less deformed than closer to the
inner wall, so that the time averaging is unsufficient. Conse-
quently these fluctuations increase as V� decreases.

The shear stress profiles �r��r� shown in Fig. 3�a� �for
different shear velocity V�� are consistent with the 1 /r2 de-
crease of Eq. �3�. The oscillations about the mean value are
due to the material structuration near the inner wall �see Sec.
III C� and to the frozen disorder in the very slowly sheared
regions, which is beyond the steady zone.

Figure 3�b� shows the dependence of the shear stress at
the inner wall S on shear velocity V�. Below a certain value
�V��0.025�, S tends to a finite limit. Consequently, the shear
stress profiles �r��r� become independent of V�. This behav-
ior characterizes the global �that is to say, in the whole sys-
tem� quasistatic regime, where the stresses �and other state
variables� do not depend on the velocity. However, for V�

�0.025, inertial effects become significant and S increases
with V�. Previous works reported a similar dependence of the
shear stress on the shear velocity in other configurations �see
Ref. �2� for a review�. More specifically, the experimental
measurement of the torque as a function of the rotation rate
in the annular shear geometry indicates a transition from a
rate independent to a rate-dependent regime
�20,23,27,33,56�. Our results can be approximated by a func-
tion such as S=Sqs+�V�

�, where Sqs is the global quasistatic

FIG. 2. �Color online� �a� Nor-
mal stress �rr�r� and �b� ratio be-
tween the normal and the ortho-
normal stresses ��� /�rr�r� profiles
for different shear velocities. ���
V�=0.0025, ��� V�=0.025, ���
V�=0.25, ��� V�=0.5, ��� V�

=1.0, ��� V�=1.5, ��� V�=2.5.
Geometry R50.

FIG. 3. �Color online� �a�
Shear stress profiles �r��r� �solid
lines� and fit according to Eq. �3�
�dashed lines� for different wall
velocities V�. �b� Shear stress at
the inner wall S as a function of
V� �semilogarithmic scale�. The
solid line represents the function
S=0.26+0.13V�

0.57. Geometry R50.
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limit value, � and � are two constants. We notice that � is
close to 1 /2 rather than 2 as might be naïvely expected from
Bagnold’s rheology. We notice that in the experiment of Ref.
�20�, the transition occurs for V��0.3 �after appropriate res-
caling�, which is not far from what is observed in Fig. 3�b�.
However, we also point out that the S�V�� curve, here shown
for geometry R50, in fact depends on the geometry.

B. Velocity field

The shear localization near the inner wall is revealed by
the strong decrease of velocity profiles v��r� shown in Fig. 4.
The decay appears to be nicely approximated by a Gaussian
function v� /V�=exp�−a�r−Ri�−b�r−Ri�2�, as shown in Fig.
4. We notice, however, that there is a sliding velocity for the
higher value of V� �2.5�, which is apparent in Fig. 5�a�. Pre-
vious studies in 2D systems �21,25,39,40,44,57� found an
exponential shape, while a Gaussian decay was observed in
3D systems for nonspherical or polydispersed grains �22�.
The agreement between the measurement of the velocity pro-
files in 3D experiment �using 3D MRI velocimetry in the
bulk or CIV at the free surface� �2� and 2D discrete simula-
tions is satisfactory �32�.

The normalization of v��r� by shear velocity V� allows to
clearly visualize the influence of this latter parameter on the

velocity profiles. In the global quasistatic regime �V�

�0.025�, there is no influence, while for increasing V� above
0.025, an increase of the localization width is observed, con-
sistently with experimental observations �25�.

The shear rate is equal to �̇�r�=−r �
�r � v��r�

r �. We denote
��r� the profile of the average angular velocity of the grains.
As previously reported in discrete simulations of granular
flows �4�, the average angular velocity is equal to half the
local shear rate �or vorticity� ��r�=−�̇�r� /2. Oscillations of
the average angular velocity are observed in the three or four
first grain layers near the inner wall �Fig. 5�, as previously
noticed by �40�. They may be due to the frustration of the
rotation of the flowing grains in contact with the glued grains
of the walls �which rotate with angular velocity 
�.

C. Solid fraction

Figure 6 shows the solid fraction profiles ��r� for V�

=0.025 and 2.5. In the global quasistatic regime �V�

�0.025�, the profile becomes independent of V�, while a
decrease of the solid fraction is observed for increasing V�.
The material is significantly dilated near the inner wall
�17,39,40�, and is structured in about five layers close to the
inner wall, with a higher amplitude for low V�. This was
previously observed in various shear geometries
�22,39,58–60�. This structuration of the granular material
certainly affects the sliding of layers of grains, with signifi-
cant consequences on the mechanical behavior near the wall.
As previously reported �40,44�, independently of the influ-
ence of V�, solid fraction � increases toward a value �max
�close to 0.82, the solid fraction in the critical state for fric-
tional disks with a similar polydispersity �53�� away from the
inner wall, and remains close to its larger initial value 0.85 in
the region where the material has not been sheared enough.

IV. CONSTITUTIVE RELATIONS

In Sec. III and Appendix C, it has been shown that shear
velocity V�, if small enough, no longer influences the radial
profiles of various quantities �see Figs. 3, 4, 24, and 25�.
Then, the whole system is in the quasistatic regime. When V�

increases, the shear rate �̇ increases in the whole sample.
Above a certain level of shear rate, inertial effects have sig-
nificant effect on the material behavior, which characterizes
the inertial regime. Considering the shear stress distribution
in the annular geometry and the decay of the velocity away

FIG. 4. �Color online� Influence of the shear velocity V� on the
velocity profiles v��r� �semilogarithmic scale�. ��� V�=0.0025, ���
V�=0.25, ��� V�=0.5, ��� V�=1.0, ��� V�=1.5, ��� V�=2.5. The
solid line indicates the function v� /V�

=exp�−0.34�r−Ri�−0.0015�r−Ri�2� and the dashed one the func-
tion v� /V�=exp�−0.21�r−Ri�−0.002�r−Ri�2�. Geometry R50.

FIG. 5. �Color online� Influ-
ence of the inner wall on the col-
lapse between the average angular
velocity ��r� �hollow symbols�
and the shear rate �̇�r� �full sym-
bols� �a� V�=2.5 and �b� V�

=0.025. Geometry R50.
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from the inner wall, we expect that the inertial zone begins at
the inner wall and that its thickness increases when V� in-
creases �Fig. 7�.

In this section, we analyze the relations between different
dimensionless quantities in the inertial regime and how they
are affected by the transition to the quasistatic regime. We
restrict our analysis to large enough shear velocity �V�
�0.025�, so that a wide enough inertial zone exists close to
the inner wall.

A. Inertial number and mechanical behavior

Discrete simulations of homogeneous plane shear flows
�4� have revealed that the constitutive law of dense granular
flows may be described through the dependency of the effec-
tive friction �* �ratio of shear � to normal P stresses� and of
the solid fraction � on the inertial number I= �̇�m / P �a 2D
equivalent of the definition given in Sec. I�, where all the
quantities are measured locally. The annular shear flows be-
ing heterogeneous, we measure the relations between the lo-
cal quantities ��r�, �*�r�=�r��r� /�rr�r�, and I�r�
= �̇�r��m /�rr�r� �or �̇�r� /��rr�r� in dimensionless units�.
Each simulation provides dynamic dilatancy and friction
laws in a range of inertial number. In the following, we try to
analyze the granular material as a continuum, consequently
we do not take into account the five first layers where wall
structuration effects are significant �see Figs. 5 and 6�.

1. Dynamic friction law

In the inertial regime, for I�0.02, �* increases approxi-
mately linearly with I and nearly independently of the geom-
etry �Fig. 8�a��:

�*�I� � �min
* + bI , �5�

with �
min
* �0.26 and b�1. The agreement with the dynamic

friction law measured in the homogeneous plane shear ge-
ometry is excellent �4,6,48�. In contrast, for lower values of
I, a deviation from this linear relation is observed, depending
on the geometry �Fig. 8�b��. The effective friction becomes
smaller than �

min
* , and this deviation increases as Ri de-

creases, that is to say as the stress gradient increases. Recip-
rocally, as Ri increases, that is to say as the stress distribution
becomes more homogeneous, the results of the annular ge-
ometry tend to the ones of the plane shear geometry. This
reveals that the simple relation between effective friction �*

and inertial number I does not depend on the stress distribu-
tion in the inertial regime, and is then quite general �see
�5,32� for flows down an inclined plane�, while it fails in the
quasistatic regime. In plane shear, �

min
* may be considered as

the internal friction in the critical state �9,53�. This is the
maximum value of �* supported by the granular material,
before it starts to flow quasistatically. With a heterogeneous
stress distribution, the granular material is able to flow below
this level.

We call �in the width of the inertial zone. Using Eqs. �3�
and �5�, we deduce that

�in�V�,Ri� = ��S�V�,Ri�/�min
* − 1�Ri. �6�

We also conventionally define the width of the shear zone
�loc through v��Ri+�loc�=V� /10. Figures 9�a� and 9�b� show
�in�V�� and �loc�V�� in geometry R50. We notice that �in
smoothly increases from zero with V�, while �loc seems to
saturate at a low value for low V� �global quasistatic regime�
and at a high value for high V� �this is related to an apparent
velocity discontinuity near the wall, suggesting increasing
collisional effects in the first layers�, with a sudden increase
for V� between 0.3 and 1. We notice that in the experiment of
Ref. �25�, the shear zone invades the whole gap for high
enough V�.

In a given geometry, for a small enough shear velocity V�,
the inertial zone disappears, and the whole system is in the
quasistatic regime. Figure 10 then shows again that the ef-
fective friction �* is no more a function of I.

2. Dynamic dilatancy law

We observe a linear decrease of solid fraction � as a func-
tion of inertial number I, independently of the geometry in

FIG. 6. �Color online� Influ-
ence of shear velocity V� on the
structuration near the inner wall.
Solid fraction profiles ��r� �a� in
the whole system and �b� in the
region close to the inner wall. The
solid line is an average over 3d,
while the dotted line is an average
over 0.5d. Geometry R50.

FIG. 7. Inertial and quasistatic zones.
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the inertial regime �Figs. 11 and 12�, and � tends to a maxi-
mum value �max, which identifies to the solid fraction in the
critical state. We can then write the dynamic dilatancy law

��I� � �max − aI , �7�

with �max�0.82 and a�0.37. The agreement with the dy-
namic dilatancy law measured in the homogeneous plane
shear geometry is excellent �4,48�. However, far from the
walls, in the region where the material is less deformed and
so remains in its initial dense state, higher values of � are
observed. Figure 12 also indicates that the inner wall induces
further dilation.

3. Frictionless grains

As shown in Figs. 8�a� and 11, the microscopic friction
coefficient � has a significant influence on the constitutive
law parameters. Those figures also reveal good agreement
with homogeneous shear simulations �4�. The solid fraction
remains a linearly decreasing function of I �with a fast

change in the quasistatic limit�. The slope a is not affected,
while �max increases to �0.85. The dynamic friction law
keeps the same tendency but is shifted toward smaller values
of friction. The linear approximation with �

min
* �0.11 �Eq.

�5�� fails for I�0.01. We notice that the range of validity of
the dynamic friction law is much larger than for frictional
grains, and that it does not seem to depend on the geometry.

Those differences are likely related to some peculiarities
of assemblies of frictionless grains �9�. The quasistatic limit,
in such materials, is only approached for much smaller val-
ues of I than in the frictional case, and �

min
* is itself consid-

erably lower. As a consequence on may expect a wider iner-
tial zone. Moreover, as the critical solid fraction coincides
with the random close packing value �9�, no solidlike region
of the system can be prevented from flowing because of its
density.

4. Comparison with previous studies

The validity of the constitutive law, once suitably gener-
alized to three dimensions, was successfully tested in flows

FIG. 8. �Color online� Dy-
namic friction law �a� in linear
scale �the solid line indicates a
slope �1� for particle coefficient
of friction �=0 and �=0.4. Dy-
namic friction law in semiloga-
rithmic scale for �b� �=0.4 and
�c� �=0. Different geometries:
��� R25, ��� R50, ��� R100, ���
R200. V�=2.5. Comparison with
plane shear �4� ���.

FIG. 9. �a� Width of the iner-
tial zone �in as a function of V�, as
deduced from Eq. �6� and Fig.
3�a�. The solid line represents the
function �in=50��1+0.5V�

0.57−1�.
�b� Width of the localization zone
�loc as a function of V�. Geometry
R50.
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down a heap between lateral walls �7,14�. In that case the
velocity field, as deduced from numerical computations in
which the viscoplastic law was implemented, exhibits a more
complex three-dimensional structure. Predicted velocities at
the free surface agreed closely with experimental results.

Thus, the applicability of the constitutive law as a relation
between local values of nonuniform strain rate and stress
fields, which we just established in 2D annular shear flow,
was previously checked in the 3D case of a laterally confined
gravity-driven flow. The validity of such an approach should
be restricted to situations in which the characteristic length
for stress or strain rate variations, say l, is significantly larger
than the grain size. In annular shear, one has l=Ri, whereas
the finite width w of the channel was found in Refs. �7,14� to
control the gradients, l=w. As Ri, in units of grain diameters,
varies between 25 and 200 here, while the interval of w
extends between 16.5 and 500 in Refs. �7,14�, similar levels
of heterogeneity are explored.

B. Internal variables

We now discuss how internal variables, which profiles are
discussed in Appendix C, scale with the inertial number I,
revealing local state laws, consistent with the one measured
in homogeneous shear flows. We observe a relation similar to

Z=Zmax−eIf �with Zmax�3� between coordination number Z
and I on Fig. 13, nearly independent of the geometry.

We do not observe a general relation between the mobili-
zation of friction M and I, but an asymptotic convergence for
growing Ri toward a relation M �gIh �Fig. 14�. For this
quantity, there is no satisfactory agreement with the homo-
geneous shear case.

We analyze the fluctuations of orthoradial velocity �v�

normalized by the natural scale �̇ as a function of I �Fig. 15�.
In the quasistatic regime, the development of collective and
intermittent motions �see Refs. �28,29� in annular shear and
Ref. �61� for a recent review� explain the increase of these
relative fluctuations. For higher values of the inertial number
I, we observe that �v� / �̇→1. On the whole, we propose to
describe the dependency by the equation �v� / �̇=1+cI−d

�Fig. 15�. Experimental results �22,26� show that �v��̇0.4.
Dividing this relation by �̇, we get an exponent equal to
−0.6, close to exponent d=−0.7, deduced from the previous
fit.

V. CONSEQUENCES FOR THE SHEAR LOCALIZATION
AND THE MACROSCOPIC BEHAVIOR

Using the constitutive law established in Sec. IV, we now
show that it is possible to understand some observations de-

FIG. 12. �Color online� Dynamic dilatancy law in semilogarith-
mic scale. Different geometries: ��� R25, ��� R50, ��� R100, ���
R200. Comparison with plane shear �4� ���. The dashed line corre-
sponds to �max=0.82.

FIG. 13. �Color online� Coordination number Z as a function of
the inertial number I �the solid line represents the function Z
=2.95−7.65I0.65� for different geometries. ��� R25, ��� R50, ���
R100, ��� R200, ��� plane shear �4�. V�=2.5.

FIG. 10. �Color online� Effective friction �* as a function of the
inertial number I ��� V�=0.00025, ��� V�=0.0025, ��� V�

=0.025, ��� V�=0.25, ��� V�=0.5, ��� V�=1.0, ��� V�=1.5, ���
V�=2.5. The solid line corresponds to �*=0.26. Geometry R50.

FIG. 11. �Color online� Dynamic dilatancy law �the solid line
indicate a slope �−0.37� for different geometries: ��� R25, ��� R50,
��� R100, ��� R200. Comparison with plane shear �4� ���.
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scribed in Sec. III. Still using dimensionless units, since the
pressure P is constant in the system and the shear stress is
given by Eq. �3�, the dynamic friction law �5� provides the
following equation for the velocity profile v��r�:

�

�r
	v��r�

r

 =

�min
*

br
−

SRi
2

br3 , �8�

where the shear stress at the inner wall S depends both on V�

and on Ri �see Sec. III A�. As shown from the measurements
drawn in Fig. 16�b�, for a large value of V�, S is high in small
geometries and strongly decreases as Ri increases. We now
integrate this relation over the range of validity of the dy-
namic friction law, this is to say in the inertial zone Ri
→Rin=Ri+�in, from which we get

v��r� =
SRi

2

2br
+

�min
*

b
r ln�r� + cr . �9�

The constant c is determined by the value of the velocity at
the inner wall, called V�

+, which is smaller than V�, revealing
some sliding at the wall as previously noticed �see Sec. III B�

V�
+ =

SRi

2b
+

�min
*

b
Ri ln�Ri� + cRi. �10�

On the whole, the velocity profile is equal to

v��r� = V�
+ r

Ri
+ r S

2b
�	Ri

r

2

− 1� +
�min

*

b
ln	 r

Ri

� .

�11�

An absolute measurement of V�
+ happens to be difficult,

considering the wall effect that disturbs the material behavior
in a layer of a few grains near the inner wall �such as Fig. 5
for the shear rate �̇�. Consequently, we obtain this quantity
from a fit, and a comparison with the measured velocity pro-
files is shown on Fig. 16�b�. The agreement is excellent,
suggesting once more the validity of the dynamic friction
law. The sliding increases when V� increases and, as shown
in Fig. 16�b�, increases when Ri decreases.

We now try to predict the S�V�� relation, which was mea-
sured and fitted in Fig. 3�b�. It is clear that in the global
quasistatic limit, as V�→0, S→�

min
* . We now write a bound-

ary condition at the limit of the inertial zone Rin. Having
used the dynamic friction law �5�, we necessarily have
�̇�Rin�=0, as appears in the fitted curve in Fig. 16�b�. Then,
beyond Rin, if this dynamic friction law was still valid, �̇�r�
would be strictly equal to zero, so that v��r� would be equal
to Cr, with a constant C. The sole possibility is C=0 since
the velocity must be equal to zero at the outer wall. We
conclude that vin=v��Rin�=0. This conclusion is wrong, as is
clear in Fig. 16�b�, and has already been discussed: the dy-
namic friction law fails in the quasistatic regime, and we
shall come back to this point just after the discussion of the
S�V�� relation. The previous assumption is written

FIG. 14. �Color online� Mobilization of friction M as a function
of the inertial number I �the solid line represents the function M
=0.73I0.29� for different geometries: ��� R25, ��� R50, ��� R100, ���
R200. V�=2.5.

FIG. 15. �Color online� Relative fluctuations as a function of the
inertial number I �the solid line represents the function �v� / ��̇d�
=1+0.07I−0.7�. ��� R25, ��� R50, ��� R100, ��� R200, � plane shear
�4�. V�=2.5.

FIG. 16. �Color online� �a� In-
fluence of the geometry on ���
V�

+ /V� �fit� and ��� S �measure-
ment� �V�=2.5�. �b� Velocity pro-
files: comparison between the
measurements ��� R25, ��� R50,
��� R100, ��� R200, and the pre-
diction of Eq. �11� �solid lines�.
The velocity profiles are limited to
the steady zone Ri→Ri+Rsteady

�V�=2.5�.
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0 = V�
+Rin

Ri
+ Rin S

2b
�	 Ri

Rin

2

− 1� +
�min

*

b
ln	Rin

Ri

� .

�12�

Since Eq. �6� is equivalent to Rin /Ri=�S /�
min
* , we get the

following implicit S�V�
+� relation:

S

�min
* − 1 − ln	 S

�min
* 
 =

2bV�
+

�min
* Ri

. �13�

For simplicity, we take V�
+=V� in the comparison with the

measurements, drawn in Fig. 17 for two geometries. The
agreement is very satisfactory considering the previous sim-
plifying assumptions. With the increase of Ri, the difference
between V�

+ and V� decreases, explaining the better results
for R200. For small V�, we write S�V��=�

min
* �1+ f�V���. A

simple development gives f �� 2b

�min* Ri

�V�. For Ri=50, f

�0.55�V�, which is close to the fit f �0.5V�
0.57 used in Fig.

3�b�. According to this analysis, S becomes proportional to
V� for much larger values, not usually accessible.

We now come back to the limit of the dynamic friction
law �5� in the quasistatic limit, as shown in Fig. 8�b�. A large
portion of the velocity profile in the steady quasistatic regime
is shown in Fig. 16�b�. As a first approximation, the velocity
can be considered exponential in this region, so that we write

v��r� = vin exp�− 	 r − Rin

�qs

� , �14�

with �qs the characteristic length in the quasistatic region,
measured in Fig. 18 �which are slightly larger than the one
estimated for very small V�, that is to say when the quasi-
static zone invades the system�, and vin is not equal to zero
contrarily to the previous simple approximation but, using
Eq. �11� to

vin =� S

�min
* V�

+ +
�min

* Ri

2b �ln	 S

�min
* 
 −

S

�min
* + 1�� .

�15�

Still using dimensionless units, since the pressure P is con-
stant in the system, we deduce that, for r�Rin, the inertial
number is equal to

I�r� = 	 1

�qs
+

1

r

vin exp�− 	 r − Rin

�qs

� . �16�

Since Rin��qs, we may write

I��*� �
vin

�qs
exp�	−

Ri�S/�min
*

�qs


���min
* /�* − 1�� .

�17�

from which we obtain:

�*�I� � �min
* �1 −

�qs

Ri�S/�min
*

ln	�qs

vin
I
�−2

. �18�

This prediction is in close agreement with the measurements,
as shown in Fig. 19.

VI. CONCLUSION

We first summarize the results presented in this paper,
before discussing the questions raised by those conclusions.
As described in Sec. II, we have studied through discrete
simulations steady annular shear flows of a model granular
material, made of a slightly polydisperse assembly of fric-
tional dissipative disks, prescribing the rotation rate of the
inner wall and the pressure exerted by the outer wall, and
varying dimensionless shear velocity V� and size Ri of the
system.

The first step �Sec. III� has consisted in measuring various
quantities, either global as the dimensionless shear stress at
the inner wall S as a function of V�, or local as the profiles of
stress components, velocity, solid fraction, and some internal
variables �coordination number, mobilization of friction, ve-
locity fluctuations, shown in Appendix C�. This has allowed

FIG. 17. �Color online� Shear stress at the wall S as a function
of the wall velocity V�. Comparison between the measurements:
��� R50 and ��� R200 and the predictions of Eq. �13�. The solid and
dashed line, respectively, indicate the results for R50 and R200.

FIG. 18. �Color online� Characteristic length �qs obtained from
the velocity profiles in the quasistatic zone. Different geometries:
��� R25, ��� R50, ��� R100, ��� R200. V�=2.5.
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us to distinguish, at the global scale, that is to say as a func-
tion of V�, between rate-dependent and rate-independent be-
haviors.

Inspired by our previous rheophysical analysis of homo-
geneous shear flows of disks �4�, the second step �Sec. IV�
has explored the validity of constitutive law for inertial re-
gime if applied locally in such an heterogeneously sheared
material. We have shown that the dynamic friction and dila-
tancy laws observed in homogeneous shear flows are exactly
recovered, when using the local state parameter I called “in-
ertial number.” Scaling laws for internal variables as function
of I have also been observed. This analysis has clearly dis-
tinguished an inertial zone close to the inner wall where the
constitutive law is relevant and a quasistatic zone away from
it, where it fails.

The last step �Sec. V� has explained how it is possible to
predict some observations presented in the first step, when
using the inertial constitutive law identified in the second
step. We have focused on two basic quantities, which are
most often discussed in the studies of annular shear flows of
granular materials, the macroscopic S�V�� relation and the
microscopic velocity profiles. The satisfactory agreement be-
tween the prediction and the measurements should not be
surprising, considering the second step. However this analy-
sis has precisely pointed out two important issues, related to
boundary conditions in such a heterogeneously sheared sys-
tem, one at the shearing wall, and the other at the transition
between inertial and quasistatic zone.

Close to the inner wall, as previously shown in different
configurations, various quantities �solid fraction, ratio of nor-
mal stresses, rotation velocity,…� present singular behaviors.
The translation velocity reveals significant sliding for suffi-
ciently high V�, even with the large roughness used in this
study. We have shown that the value V�

+ of this sliding ve-
locity is an important ingredient for a good prediction. This
means that a detailed understanding of the rheophysics of the
granular materials in the very first layers near a rough wall is
of great relevance. Apart from the characteristics of the
granular material itself, the relative influences of V�, Ri, and
the wall roughness must be taken into account. Comparisons
between physical experiments and discrete simulations are

described in Ref. �42�. Considering the frustration of the par-
ticle rotation imposed by the wall, Cosserat models might be
adapted to describe this interface zone �62�, as done by Refs.
�40,63� for annular shear. Another discussion of the bound-
ary condition at the wall is proposed in Ref. �64�.

The transition between inertial and quasistatic zones is a
second puzzling issue. Considering the constitutive law iden-
tified in homogeneous shear flows, the granular material
should reach the so-called critical state in the quasistatic
limit �when I→0�, in which it flows rate independently with
an effective friction tan � and a solid fraction �c. Beyond this
limit �for S / P tan � and/or ���c�, the granular material,
being in a solidlike state, should not be able to flow. How-
ever, �apparently unbounded� creep flows are observed in
this nominally solid regime. This creeping behavior is well
known in free surface flows, where an exponential velocity
profile has been clearly evidenced with a characteristic
length of the order of one grain diameter �65–68�. In the
annular shear geometry, a similar behavior is observed but
the characteristic length increases as Ri increases, that is to
say as the stress gradient decreases, or as the stress field
becomes more homogeneous.

For a sufficiently small V�, there is no more inertial zone,
so that both boundary conditions occur at the same place, the
inner wall. Considering the typical values of the parameters
in the systems which have been studied experimentally or
through discrete simulations, we notice that this corresponds
to the usual case. The understanding of such a situation
merges the two previous problems: the behavior of a granu-
lar material close to an interface and in the quasistatic re-
gime, together with the heterogeneity of the stress field.

The already noticed observation of collective and inter-
mittent motions in this quasistatic regime has driven the de-
velopment of several rheological models �see Refs.
�26,30,69,70,61� for a recent review�: diffusion equation for
the fluctuations, transmission of forces at the scale of corre-
lated clusters, two-phase fluid model with order parameter,
activation of rearrangements through the fluctuations of ve-
locity or forces, occurring either at the boundary of the iner-
tial zone, or at the inner wall in the global quasistatic limit.

Our understanding is far from complete and requires fur-
ther studies, merging physical experiments, discrete simula-
tions and theoretical developments. For instance, we have
not measured the fabric in the quasistatic zone, although its
importance has been clearly evidenced in homogeneous
shear �53,54�. We have not discussed the evolution of the
internal variables in the transient regime �evolution from ini-
tial to steady state�, or in a shear reversal regime �25,31�, as
should be qualitatively possible using simplified microscopic
description �71�. We have restricted our attention to velocity
controlled shear flows, so that it was not possible to study the
flow threshold. A specific study of the jamming mechanisms
should be performed by controlling the shear stress �27�. We
have not discussed the influence of the roughness on the
interface behavior, for which we refer to Ref. �42�. We may
also wonder to what extent the conclusions drawn for granu-
lar materials differ for other complex fluids made of interact-
ing elements �dense suspensions, foam, emulsions,…�
�72,73�.

FIG. 19. �Color online� Effective friction �* as a function of the
inertial number I, in the quasistatic zone. Comparison between the
measurements: ��� R25, ��� R50, ��� R100, ��� R200, ��� plane
shear �4� and the prediction of Eq. �18� �solid lines�. The dashed
line indicates �

min
* =0.26. V�=2.5.
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APPENDIX A: PERIODIC BOUNDARY CONDITION

Each grain the center of which is in �r ,�� with 0��
�� is associated to a collection of copies with centers in
r ,�+k� where k is an integer. The corresponding velocities,
accelerations and forces are related by rotations of angles
k�.

Every time a grain moves out of the simulation cell, one
of its copies moves in by the opposite boundary, similarly to
the usual case of periodic boundary conditions by translation.
However, the velocities, accelerations, and forces are af-
fected by a rotation of 	�.

The situation of the contact of two grains i and j where �i
is close to � and � j is close to zero is described in Fig. 20.
More precisely, i is in contact with the copy j� of j, obtained
by rotation of an angle �, while j is in contact with i� ob-
tained by rotation of i of an angle −�. To evaluate the forces
acting over grain i we have to use the normal and tangential

unit vectors n� ij� �pointing from i to j�� and t�ij� �such that
�n� ij� , t�ij�� is positively oriented�, respectively, and the motion
of the grain j�, while for j we have to use corresponding n� ji�
and t�ji� and the motion of i�. Vector n� ij� is not, as usually,
equal to −n� ji�, but to its image obtained by rotation of an
angle −�.

We have measured the influence of the periodic boundary
condition comparing the radial profiles of various quantities
as a function of � �� /16, � /8, � /4, � /2, �, and the whole
ring 2�� for the geometry Ri=25 and Ro=50. As an example,
we show in Fig. 21 the profiles of the orthoradial velocity. As
expected, the results are all the more consistent as the value
of � increases. In this case, �=� /2 already gives a very
good result.

We quantify the deviations of the velocity profiles v��r�
by means of an indicator of relative error. The velocity tends
to zero as the distance from the inner wall. To avoid incon-
sistencies due to values close to zero in the frame of the
usual definition of relative error, and to give more weight to
the values close to the inner wall, we propose to calculate the
relative error over variable F��r�=V�−v��r ,��:

���� =
1

Ro − Ri
�

Ri

Ro �F��r� − F2��r�
F2��r�

�dr . �19�

���� is simply the sum over the whole geometry of the rela-
tive error of the variable F for a certain value of � compared
to the result for a system twice as large �2��.

FIG. 20. Periodic boundary conditions.

FIG. 21. �Color online� Velocity profiles v��r� /V� for different
values of � rad. ��� �=� /16, ��� �=� /8, ��� �=� /2, ���
�=2�. Ri=25, Ro=50, V�=2.5.

FIG. 22. �Color online� Rela-
tive error � on the orthoradial ve-
locity v� �V�=2.5�, �a� as function
of �, �b� as function of the inner
wall length �Ri. ��� Ri=25
and Ro=50, ��� Ri=100, and Ro

=200.
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In Fig. 22�a�, we observe a clear decrease of the error
indicator ���� as we increase the value of � for the smallest
geometry �Ri=25 and Ro=50�. The same analysis for a larger
geometry �Ri=100 and Ro=200� shows better results for
smaller values of �. This shows that the influence of � on
the results depends on the size of the system. We try to relate
both parameters in Fig. 22�b�, where we plot ���� as a func-
tion of the angular sector length at the inner wall ��Ri�. We
observe that a good accuracy of the results can be achieved
with a length �Ri�40 for geometries with Ri�25. Based on
this consideration, we have chosen the values of � for each
of our geometries �Table I�.

APPENDIX B: AVERAGING METHOD

Considering the revolution symmetry of our system, the
radial profiles of different quantities �orthoradial velocity
v��r�, coordination number Z�r�, etc.� are obtained by an
averaging procedure over coordinate � along the coordinate r
�Fig. 23�. To each of the n grains i are associated different
scalar quantities Gi. We define a weight function �i�r� as the
intercept angle defined on Fig. 23 �cos��i�r� /2�= �r2+ri

2

−di
2 /4� / �2rri� for a disk of diameter di�. Some variables,

such as solid fraction �, are averaged over the whole space,
while others, suchas the coordination number Z, have no
sense outside the grain space. This leads to the two following
definitions of the average:

�G��r� =
1

�
�
i=1

n

Gi�i�r� �20�

and

�G���r� =

�
i=1

n

Gi�i�r�

�
i=1

n

�i�r�

. �21�

Applying this principle, we determine the solid fraction pro-
file ��r� as

����r� =
1

�
�
i=1

n

�i�r� , �22�

where the value of �i is naturally equal to 1. This means that
�G� and �G�� are simply related by the solid fraction �G�
= ����G��.

We take into account the variation of vectorial and tenso-
rial quantities inside the grains, when written in the polar
basis e�r���= � cos �

sin � � and e��= � −sin �
cos � �. Hence, the radial profiles

of the velocity components are

v��r� =
1

�
i=1

n

�i�r�
�
i=1

n �
�i−��i/2�

�i+��i/2�

v� i · e�����d� . �23�

The stress tensor of each grain is defined according to
Ref. �74� �with Ai=�di

2 /4 the grain area�:

�= i =
1

Ai	�
j�i

F� ij � r�ij + mi�v� i � �v� i
 . �24�

The first term is associated to the contact forces, and the
second one to the velocity fluctuations. The radial profiles of
the components of the stress tensor are

FIG. 24. �Color online� Influence of shear velocity V� on the
coordination number profiles Z�r�. ��� V�=0.0025, ��� V�=0.025,
��� V�=0.25, ��� V�=0.5, ��� V�=1.0, ��� V�=1.5, ��� V�=2.5.
Geometry R50.

FIG. 25. �Color online� Influence of shear velocity V� on the
mobilization of friction profiles M�r�. ��� V�=0.00025, ��� V�

=0.0025, ��� V�=0.025, ��� V�=0.25, ��� V�=2.5. Geometry R50.

FIG. 23. Various quantities associated to a grain i.
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����r� =
1

�
�
i=1

n �
�i−��i/2�

�i+��i/2�

e������= ie�����d� . �25�

Since we try to analyze the granular material as a con-
tinuum �except for the very first layers near the wall�, we
consider the coarse-grained variations of the quantities by
smoothing the profiles through central moving averages of
3d length �if not otherwise indicated�. The remaining fluc-
tuations would disappear with an increase of the simulation
time �t over which the data are averaged.

APPENDIX C: INTERNAL VARIABLES

Coordination number Z is the average number of contacts
per grain. In the inertial regime, the general tendency is a
decrease of Z as the shear rate �̇ increases �that is to say for
increasing V� in Fig. 24�. For smaller values of �̇ �corre-
sponding to smaller values of V� or to a larger distance from
the inner wall� the coordination number Z approaches a lim-
iting value, slightly above 3. Such a limit is in rough agree-
ment with other numerical observations of the critical state
of frictional disks. Reference �53� thus reports Z�3.6. The
somewhat lower values observed in our case are likely due to
the larger strain rates, and to the remaining influence, on the
quasistatic region of limited width, of the more agitated inner
zone.

We define the mobilization of friction as ratio M =Zs /Z,
where Zs is the average number of sliding contacts per grain
�4,75�. Figure 25 shows that M increases as the shear rate
increases, whether through an increase of V� or a decrease of

the distance from the inner wall. We notice that the stabili-
zation of the M�r� profile occurs for V��0.0025, a value
much smaller than the one required for the stabilization of
the other studied quantities �V��0.025�.

For any quantity q�r� averaged in space �along �� and in
time, we may define its fluctuation

�q�r�2 =
1

�
�

0

�

q�r,��2d� − q�r�2, �26�

where q�r ,��2 is averaged in time. We measure the fluctua-
tions of the translational and rotational velocities �v��r�,
�vr�r�, and ���r�. Our analysis �long time scale� takes into
account both the small fluctuations around the mean motion
�in the cage formed by the nearest neighbors�, and the large
fluctuations associated to collective motions �76�.

Figure 26 first shows that the general amplitude of the
fluctuations increases with V�. Then, for various V�, they
reveal a strong decay of the fluctuating quantities close to the
inner wall, comparable to that of the respective average
quantities, consistently with previous observations
�4,17,22,28,39,58�. This decay is still true at larger distances
for �v� and �� �with an increase close to the outer wall�. We
also notice a stabilization of �vr, which occurs at r−Ri
�10 for V�=0.025 and at r−Ri�20 for V�=2.5, that is to
say precisely when the solid fraction � reaches a value
�0.82 �Fig. 6�. Above this critical value of �, the material
would be so compact that the radial motions would take
place as a block. Figure 26�a� shows the equality of �v� and
�vr before the stabilization of �vr�r�, while Fig. 26�b� shows
the systematic equality of �v� and �� /2.
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